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IN'TERNAL WAVES OVER A CONTINEN4TAL SHELF

Takashi Ichiye
Oceanographic Institute

Florida State University

1. Introduction:

Rattray (1959) developed a theory on internal tides caused

by oncoming surface tides over a continental shelf on a rotating system.

He considered the case of surface tides with wave lengths much larger

than a width of the shelf which is assumed to have either a uniform or

linearly increasing depth. The internal waves thus generated are

standing waves over the shelf and progressive waves travelling seaward

in the open sea. The amplitudes of the standing waves are large com-

pared with those of surface tides and also with those of tbe progressivc
internal waves indicating spectral structure with maxima and minima

according to frequencies.

However, internal waves which are observed over a continental

shelf have sometimes periods different from tidal periods and also
they propagate in directions other than normal to the coast. The

present study deals with the waves travelling in two-dimensional
directions in regards to the coast in a two-layered sea. Although

the effect of Coriolis' force is also included, a wide range of periods

of the waves is assumed.

2. Fundamental Equations:

In a two-layered rotating ocean, the x and y axis are taken
per-pendicular and parallel to the coast, respectively. The density

difference between the two layers is taken as 4 and the effect of

friction is neglected. The equations of motion for the upper and

lower layer are respectively: (with 5' = 4 /.9 )
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~i~~/>t ±£ W - ~(2)

and @k (3)
-/ t (4)

The equation of continuity is, for the upper layer:

and for the lower layer:"a (g " U") /"ýX-*.9a(1,v)l: (6 ~l/¢€)

In these equations a primed quantity refers to the upper

layer and a double-primed quantity to the lower layer; J( and Lt-

are the horizontal components of velocity; ' is the elevation of the

upper surface of a layer; & is the layer depth; and g and f are a

gravity constant and Coriolas' coefficient, respectively.

It is assumed that the depths g/and 9 #are independent on

and that the quantities 1< , IP and are proportional toeqi

"Using U , ' and 5 for the factors of the exponential

term, the velocity components in the upper and lower layer are expresse

by: () L' (t (7)

from equations (1) and (2) and

from equations (4) end (5), respectively, where
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Substituting (7) and (8) into (3) we have:

Similarly, from (9), (10) and (6), we have: - ..-

Elimination of g from (12) and (13) yields:

where -fu -g + .ý 1 andpfl (/tI~s a differential operator defined
by: F H xjf'(HI ~if (6-0 +.fk*)3'P Q Y, + 6,k (15)

From this definition, there is a relation like
P (1g) = P (f,') t L •")(16)

3. Waves in the sea of a uniform depth:

When the depths A• / and 4 1 are uniform, equation (14) can be

separated into two modes; If; for barotropic mode and gel/for baroclinic

mode, such as:

4ý' (.;t) '1mL (17)

(- f' 4' -5+(•,'. "-• (4.- •.=o (,8)

The elevation of interface 9" can be expressed in terms of £ 'by

use of (13). Substitution of (17) and (18) into (13) yields:

/19 (19)

as - ,, (20)

where C is a small constant of order of magnitude 10"3 since it is

defined by:

(21)
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The velocity components L41, /and U', V can be determined

in terms of 'A~or •-frome equations (7) to (10). For the barotropic

mode equation (19) indicates that og• and ! are of an equal order
of magnitudes. Therefore, the velocity components of the upper and

lower layer of this mode have relations:

j •' 1* •'• (22)

since • and Ex p<r . Eressing the right-hand side of
(9) and (10) with of< by substitution of (20), we have:

I.
"U _ l ,jot_ / (23)

Therefore, elevation of the interface and velocity components

oE the lower layer are expressed by corresponding quantities of the

upper layer. However, since equation (20) with (21) indicates that

41C' is about 10-3 times i , it is convenient to express ele-

vations and velocity components of the baroclinic modes with 19C

Also hereafter . it sometimes called surface waves (do not confuse

with those in a sa-nse of deep sea waves) and internal waves. respective'

If a wave number of y direction is assumed to be • , the

elementary solutions of (17) and (18) can be expressed by

1ý . ý xp (Ieemx 1-C'q 4 'tVt) (24)

e 9*0 + -420f 4-(25)

in which z. h) a)
(26)

When 4fl or fl is real, the elementary solutions (24) and

(25) represent the plane waves. The directions in which those waves
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propagate make an angle of + tan (1(m/k) or + tan 1(n/k), respectively,
clockwise with the negative y-direction. The wave number 4,,or or
measured along the direction of propagation of surface and internal
waves is equal to the equare root of the right hand side of (26) or (27).
respectively.

The plans waves are possible only when ( f . In Table 1
the wave numbers and corresponding wave lengths measured along the
direction of propagation are shown for waves with periods of half
day and one hours, respectively, in the sea of 30* latitudes. Two
kinds of depths of two layers are assumed, corresponding to the con-
tinental shelf and the open sea. It is seen that the wave lengths
of internal waves are much shorter than those of surface waves.

When G(< , the right hand side of (26) and (27) becomes
negative and thus, rh and *n are always imaginary when I is assumed to
-e real. In case of ~'5 ,when ik exceeds orwori

becomes imaginary.
If it is assumed that the sea consists of the semi-infinite

plane of positiveX to the right of the coastline of y-axis, the ele-
mentary solutions which are finite in the infinite distance should have
a negative coefficient for X when M or fl becomes imaginary. These
solutions represent the waves called Kelvin waves which propagate along
the coast with amplitudes decreasing exponentially from the coast
(Lamb, 1945 p. 319).

In presence of the coastline on the y-axis, two solutions
corresponding to double signs in (24) or (24) with real YV1 or )
represent the incident and reflected waves propagating obliquely with
the coast.

In case of 6 S- , three combinations of different
types of waves in the surface and internal mode are possible, according
to the values of k . For a range of * satisfying *<4, , both
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surface and internal waves are plane waves. For a range k P 74m
the surface waves are of Kelvin wave type, while the internal waves are

plane waves. For 40 ) #kn both are Kelvin waves. Only the last

combination is possible for the case of e<-'<• 5
In case of both waves being plane waves, the propagating

direction of the internal waves is closer to the x-axis compared to t~e

direction of the surface waves since /W < 47 for the same value

of k, . It is easily seen that the surface Kelvin waves can generate
plane internal waves moving away from the coast for.* 7 -k
The values of and -k for the open sea listed in Table 1
indicate that the waves of tidal periods most likely have this range

of values of k
The velocity of Kelvin waves can be determined from a

boundary condition at the coast. Vanisbment of the velocity component
normal to the coast determines the specific value of for each of

barotropic and baroclinic modes, for which velocities of Ksivin waves

become ( h)a• and h9 h-) h"J'" , respectively. It must be noted

that these velocities are independent on the rate of rotation of the

earth. On the other hand, the propagating velocity of plane waves

depends on the Coriolis coefficient as seen in the equations for k

and A. of (26) and (27).
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TABLE 1. Wave Numbers and Wave Lengths of Plane Waves

SHELF OPEN SEA
Depth ht(M) h"(M) h'(M) ht(M)

50 150 50 150

Period 1/2 day 1 hour 1/2 day 1 hour

km(10"1) 2.86 x 10O3 3.96 x 10-2 0.91 x 10"3 1.26 x 10 2

27rkm(KM) 2200 154 6900 498

kn(10" 1) 0.146 2.02 0.128 1.77
2•kn(KM) 43 3.1 49 3.6

Note: M - meters

KM - kilometers

f - 7.3 x 10.4 (sec"1)

8'- 2 x 10-3

FIGURE 1. Schematical Configuration of the Ocean with a Shelfx '1
/

t IL

x Tf-

/m
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4. General mathematical problems on waves over a shelf.

It is assumed that a continental shelf consisting of two

layers with arbitrary depth distributions is bounded by the straight

coast at x - 0 and by the straight edge at x from where the open

sea with two layers each of a uniform depth extends infinitely to the

direction of positive x-axis. The quantities related to the shelf and

the open sea are distinAished by suffices I and I1, respectively, if

such is necessary. (See Figure 1)

As an example, a mathematical problem on waves over the shelf

in the barotropic mode (or for a uniform density) is considered. In

this case, equation (14) which must be satisfied over the shelf becomes

the second order ordinary differential equation with x, since g' - 0.

The-refore, it has two elementary solutions. In the open sea the surface

elevation must satisfy equation (17) only, which also has two elementary

solutions. When the waves in the open sea are of plane wave type,

that is, m and k are real, these two solutions represent respectively

incident and reflected waves. Four unknown coefficients of elementary

solutions on the shelf and in the open sea can be determined except

for a common factor from three boundary conditions: two conditions

at the edge postulate continuity of elevation and current flux normal

to the edge and one condition at the coast postulates vanishment of

the normal component of current flux. This mathematical problem can

be interpreted physically as such that amplitudes of stationary waves

in the shelf and those of reflected waves in the open sea may be deter-

mined as the ratios to the incident waves.
When the waves in the open sea are of Kelvin wave type,

there is only one elementary solution possible in the open sea repre-

senting waves propagating parallel to the coast. However, three

boundary conditions must be satisfied as in case of the plane waves.

These boundary conditions specify the value of 4 which becomes equal

to ' C ý h ) t, if the open sea is bounded by a straight
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coast only (Lamb, 1945).
For simplicity a continental shelf with a uniform depth

W:,is considered. The solution of equation (17) for the elevation
over the shelf is expressed by:

~A Ae~ .. I-e3mt (28)

and for the elevation in the open sea:

r -e ~ (29)

where M.Tand I'bn. are defined by:

"M ( 0'. - ) C=h (-- kh..) (30a)

2m . - (' )( • ,,)' 6 + (30b)

The boundary condition at the coast (x - 0) that Lit-= 0
yields the relation

8/A = /L -= ( . ,,,m.r fk)( ,'f. k) (31)

The boundary conditions that LfriT. and = at Z yield

the equation for k4:
-R r. ) (V#n-- A"tf. () (32)

in which -= (e '• 0 _ Z e -i• ,)/(e ,C v)(33)
If the depths of the shelf and the open sea are nearly

equal, the presence of the shelf does not noticeabley affect the mode
of waves in the open sea. Therefore, it is considered that the value

of *-satisfying (32) is nearly equal to e Q h' )"a (=1ko)which

satisfies this equation in case of no shelf. In fact, if the solution

of & in (32) is expressed by

-k = -o t x(34)

it is easily seen that >f becomes a small quantity compared toko,

by substituting (34) into (31) and (32). (BecauseA-/ diminishes to
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zero if i27T 2is taken positive, the equation (32) becomes almost the

same as in case of no shelf.)

More interesting is the case, in which the depth of the

shelf is much less than that of the open sea, corresponding to an

actual situation. This condition leads to the value ofjt nearly

equal to unity, if 6" is not nearly equal to fu . Frther, if the

width of the shelf is not so large, the effect of the shelf on the

waves in the open sea is considered not to be conspicuous. Therefore,

substitution of (34) in equation (32) yields, after a little manipu-

lation:

where6- h -

If we take a following numerical example:

equations (34) to (36) yield

-P =/0 .O Cc P" ) 1n 0 "O33'/o'(cmI1)) X= 7XIO-8Coi-I)
Therefore, the conditton that )Y is much less than4i.s satisfied.

In the two-layered ocean, mathematical problems to be

solved can be physically interpreted almost similarly to those in the

ocean with a uniform density. If k >. in the open sea, or the
waves both of barotropic and baroclinic modes are of plane wave type,

four elementary solutions representing incident and reflected waves

of both modes are possible. The equation (14) yields also four

elementary solutions over the shelf. Therefore, there are eight

unknown coefficients to be determined from boundary conditions at the

coast and at the edge of the open sea. The conditions at the coast are

two in number, postulating vanishment of current flux in each layer
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normal to the coast. The conditions at the edge are four in number,

postulating continuity of elevation of the upper surface and of flux

normal to the edge in each layer. Thus, six unknown coefficients

including amplitudes of reflected surface and internal waves can be

determined from these boundary conditions as ratios to amplitudes of

incident surface and internal waves: two supposedly known coefficients.

Rattray's theory (1959) is a special case in this type of wave system

in which the waves propagate normally to the coast. He assumed

further that there is no incident internal waves. Therefore, in

principle the six unknown coefficients can be expressed by the ratios

to the amplitude of the incident surface tides. He assumed further

that the width of the shelf is much less than the wave length of sur-

face tides. Then the elementary solutions representing incident and

reflected waves of the barotropic modes become constant in a range

of C small compared to this wave length. He expressed two unknown

coefficients representing amplitudes of internal seiches in the shelf

and of reflected internal waves in the open sea in terms of the surface

tides consisting of incident and reflected waves.

In the open sea, if - A - or the waves of both modes

are of Kelvin wave type, numbers of possible elementary solutions are

two. In the shelf there are four elementary solutions as in case of

S-< A," . The numbers of boundary conditions are six as

before. These six boundary conditions yield six linear homogeneous

equations on the six unknown constants. Therefore, in order to

obtain non-trivial solutions, the diterminant consisting of coefficients

to the unknown constants in the six equations should vanish. This
to

condition leads to the equation for 4 similar~equation (32) which

is the result for a uniform oeean.

In the open sea if , k -w A w% , the waves

of barotropic or barodlinic mode are respectively of Kelvin wave or

plane wave type. If there are incident internal waves in the open

sea, the numbers of elementary solutions are three. Since the numbers
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of elementary solutions on the shelf and of the boundary conditions

are the same as in other cases of the two-layered ocean, six unknown

coefficients can be determined as the ratios to one known coefficient,

say, the amplitude of the incident internal waves. This model cor-
responds to a case when the internal waves oncoming from an infinite

distance are reflected by the shelf. However, more practical is a

problem in which the surface Kelvin waves in the open sea generate the

internal waves outgoing from the shelf area. In this problem there

are no incident internal waves in the open sea. Therefore, six

boundary conditions yield six linear equations about six unknown

coefficients as in case that _ )A 7 . The characteristic

equation for k is obtained in order to avoid trivial solutions. The

details of this case is discussed in the next chapter, since this seems

to happen most comuonly in an actual ocean.

5. Waves on a shelf with a uniform depth.

Physical features of the wave system corresponding to a case

when -* M < k < k in the open sea are clearly explained with

a model of the simplest geometrical configuration; a shelf and an open

sea uniform depths and a constant depth of the upper layer. It is

assumed that the internal waves are generated by the presence of a

coast, eliminating incident internal waves in the open sea. The

elementary solutions of barotropic and baroclinic modes in the open

sea are given by
"/• 1= E e ME X (37)

S= e n (38)

and those in the shelf are:

/ X e -,zX (39)

- e ÷(40)
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where suffices I and 11 refer to the shelf and the open sea, res-

pectively. Since is mailer than by one to two orders of

magnitude, the elementary solutions of barotropic mode are represented

in terms of 4? instead of *In equations (37) to (40),

'land tl must be real and positive, while lfland In,: may
be either real or imaginary.

Boundary conditions at the coast (x - 0) are

R =0 (41a) (41b)

Since 4 and - ,boundary

conditions (41a) and (41b) with (22) and (23) yield
r I"

Substituting (39) and (40) into (7) and (9) with conditions

(42) yields:

f3/1A u (('6-Mt, 4 k)/ L'6 Or - (43)

1)/c ( 'n +f~k) / (C.6'fl - 4f) (44)
where the ratios B/A and D/C are designated byA and j/ , respectively.

Continuity of ellvation of the free surface at the edge of

theshlf(x -J) yeA,,w th an approximation .When

equation (19) is used continuity of elevation of the interface at the

edge yields ( e -e ire= (-A () (45))

rRQi((e Qu e (na (46)

where R - / (47)

Continuity at x of current fluxes normal to the edge

of the shelf yields respectively in the upper and lower layers:

0 ." -t (48)

-k (&< ')~,~(t4~Uq) (49)
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Substituting relations (22) and (23) into (49) and elimin-
ating U by use of (48), we have:

~rz A'~d/z (50)
instead of (49). The boundary conditions (50) and (45) yield the
same equation for k as equation (32) by eliminating A, B, and Z of

and z . This relation (32) yields the proper value of
as in case of a homogeneous ocean. For this value of • , the ampli-
tudes of $nternal waves C and F can be determined in terms of E orQ
from the boundary conditions (46) and (48).

Equation (48) leads to

(51)

where

2, e L VIrv• -+'),. (52)

2X 41 (53)
Eliminating F from (46) and (51) we have:

U ~ ~ ~ t M Y, (Cc) ( 4-60A1 ) C

The assumptions which were made in deriving equation (35)
lead to the following relations among constant s included in equation

(54).

~ (55&.)

'~241 ~ A LJ k) 4 A(ZJ(k3Ab
-m Z9- -- ~I~fk z~~..

IOI oil ýji-') Io ~ (F7 /(58a,b)
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With these relations (55) to (58) equation (54) can be written as:

~C ý Ce$a P r 2 f~y si 3 (59)

where (60)

These approximation formulas yield the amplitude of reflected internal

waves as: .F .te OP--L (rzLs-1
-- ,[(,TL.- X.:L (rL../L. -.,,,,,t+ 4,. co, S,

The relation (56a) leads to an approximation Y/- /
The amplitude of the internal seiches in the shelf is given by 2C.

In order to compare with the result of Rattray (1959), the amplitude
of surface Kelvin waves i s assumed to be equal to that of the

surface tides of his theory. If Ar is the amplitude of internal

seiches of his theory, the ratio 2C/Ar is given by:

4IYA ( - ,1- - it-, - (*ý1 --
(It U. -/Z -X) C I-, (' *,.l) (62)

In Figure 2 the curve ofj14 *'gainst the ratio 6/÷fis
plotted. The same values of depths of both layers, " andf as
listed in Table 1 are used. The width of the shelf / is equal to

100 km. The curve indicates that internal seiches due to the surface

Kelvin waves become much larger than those due to the plane waves

propagating normal to the coast as the period approaches to one

pendulum day. This situation is more clearly illustrated in Figure 3,

which shows the amplitudes (ratios to the surface tides) of the

internal seiches and outgoing internal waves in the open sea as

functions of AO. *,,' - 4 /A x" for frequency 6':/f and
" f(Y- , respectively. For the surface Kelvin waves, 2C/Q and

F/6Q are determined respectively from (59) and (60), and for the

plane waves, equations (34) and (35) in Rattray's (1959) paper are

used, The same physical and geometrical constants as Figure 2 are
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used. It is seen that both internal seiches and internal reflected

waves generated by the surface Kelvin waves become conspicuous for the
frequency a - 1.1f.

6. Internal waves with a period of a pendulum day.

In case that a - f, equations (7) to (10) are reduced to two

equations:(6ab

The solutions of these equations are:
=M - 6 N €4a,b)

If the sea is assumed to extend from x - 0 to positive x, the waves

which are finite at an infinite distance must propagate to the dir-
ection of negative y, (Kelvin waves) because k should be positive in

(64a)and(b). Substituting (64a)and(b) into (1), (3), (5) and (6) and

eliminating v' and v", we have:

(.3 N)-'Ni3 (66)_

Boundary conditions at x - 0 are vanisluent of h'ul and ~hu".

Integrating (66) and (67) with these conditions, we have:

The boundary conditions that h'u' and l'i."' are finite at x '

postulate the relations: _LJ
( (N-M)+93 eI d - =o C) (69)

"-3-- +-O" 't I' Ne((70)
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Equations (69) and (70) yield the characteristic equation of k for

non-trivial constant M and N.

If the shelf and the open sea are assumed to have uniform

depths as in the previous chapter, equations (70) and (71) become:

2, kA')M- 6-N=O (71)

Elimination of M and N from (72) and (73) yields:

This transcendent equation for k has roots of barotropic and

baroclinic modes. For the barotropic mode, I satisfying (73) is
nearly equal to 45 -( and yields *f<</

The second approximation of k is obtained from (73) and N/M is given

by (71). # / .'a7- 12

_k 1-, - • (4 --9 '' e J (74)
NV / Al 4111G '/) (75)

Equation (75) is the same as equation (19) which was derived with the

assumption that f-4 0' . For the baroclinic mode, the value of k

satisfying (73) leads to h 4 >>/. Equations (74) and (72) yield

respectively k and , N/M:

p4 g X (76)

N/ l • Ci- =/ - .' 9/'Z .I., (77)
Equation (77) is essentially the same as (20). Equation (76) indicates

that the internal Kelvin waves in this system must have the wave

velacity of internal waves on the sldif with no Totation.
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7. Summary and Applicatian.

The wave system in a two-layered rotating ocean bounded with

a shelf having a straight coastline and a constant width can be sum-
m-vrized according to relative magnitude of its frequency a and the

Coriolis' coefficient f.

(1) a> f. The wave numbers k, kin, and kn indicate those in the dir-

ection of the coast, barotropic and baroclinic mode of the open sea,

respectively. (a) k<km. Both modes are planevwaves propagating in

different directions (the barotropic waves with a larger angle to the

coast). (b) kn> k> Uim. Barotropic and baroclinic modes are respect-
ively Kelvin waves and plane waves, I corresponds to barotropic

Kelvin waves. (c) k>kn. Both modes are Kelvin waves, I corresponds

to internal Kelvin waves.

(2) qýf. Both barotropic and baroclinic modes are Kelvin waves. The

characteristic equation yields the values of k almost separately for
"ioa-orc2ic and baroclinic modes.

Energy relationships between incident and reflected waves

of both modes may be discussed in a similar manner to Snodgrass and

others (1962). However, the primary purpose of this work is to sug-

gest a qualitative explanation on the observed temperature fluctuation
of tidal periods at an offshore platform in the Gulf of Mexico near

Panma City, Florida (Salsman, 1962). The BT records indicate that

the oscillations of the thermocline have amplitudes reaching as great

as 30 feet with a period of diurnal tides during tropic tides, but
that these oscillations are much smaller in amplitudes and irregular

in periods during equatorial tides. A pendulum day on the northern

Gulf Coast is nearly equal to one day. The surface tides of the area

coisidered are diurnal during tropic tides, but of mixed type diuring

equatorial tides. However, tidal ranges during the latter almost

reach half of those during the former. Therefore, if the amplitudes

of internal tides are simply proportional to those of the surface

tides, the oscillations of the thermocline during equatorial tides shou
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reach half of those during tropical tides. Also Rattray's (1959)

theory indicates that the amplitudes of the internal waves decrease as

the period approaches to a pndulum day. His theory is based on an

assumption that the surface tides propagate perpendicularly to the

coast. However, a cotidal chart of the Gulf of Mexico suggests that

the tidal waves move parallel to the northern coast. Therefore,

Rattray's theory is not applicable to the area considered. The result

obtained in Chapter 5 suggests that if the surface tides propagate

parallel to the coast as Kelvin waves, diurnal tides may cause much

larger internal tides than semi-diurnal ones owing to the condition

that a pendulum day there is close to one day. The result of Chapter 6

postulates that if the period is exactly equal to a pendulum day,

large internal tides may be generated only when the surface tides have

a wave length nearly equal to that of the internal Kelvin wave. The

surface tides may have components of small magnitudes with such wave

langth because amplitudes of 1 cm can generate internal waves of about

10 m according to equation (77). Also, see Supers and Emery (1963)

for observations an waves normal to the coast.
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Errata

Page 3 line 2. Read O'(.-t-B' for the r.h.a. ol
equation (12).
Substitute equation (13) for (12) and vice 00sa.


